C-element: A New Clustering Algorithm to Find High Quality Functional Modules in PPI Networks
نویسندگان
چکیده
Graph clustering algorithms are widely used in the analysis of biological networks. Extracting functional modules in protein-protein interaction (PPI) networks is one such use. Most clustering algorithms whose focuses are on finding functional modules try either to find a clique like sub networks or to grow clusters starting from vertices with high degrees as seeds. These algorithms do not make any difference between a biological network and any other networks. In the current research, we present a new procedure to find functional modules in PPI networks. Our main idea is to model a biological concept and to use this concept for finding good functional modules in PPI networks. In order to evaluate the quality of the obtained clusters, we compared the results of our algorithm with those of some other widely used clustering algorithms on three high throughput PPI networks from Sacchromyces Cerevisiae, Homo sapiens and Caenorhabditis elegans as well as on some tissue specific networks. Gene Ontology (GO) analyses were used to compare the results of different algorithms. Each algorithm's result was then compared with GO-term derived functional modules. We also analyzed the effect of using tissue specific networks on the quality of the obtained clusters. The experimental results indicate that the new algorithm outperforms most of the others, and this improvement is more significant when tissue specific networks are used.
منابع مشابه
A degree-distribution based hierarchical agglomerative clustering algorithm for protein complexes identification
Since cellular functionality is typically envisioned as having a hierarchical structure, we propose a framework to identify modules (or clusters) within protein-protein interaction (PPI) networks in this paper. Based on the within-module and between-module edges of subgraphs and degree distribution, we present a formal module definition in PPI networks. Using the new module definition, an effec...
متن کامل6 th International Workshop on Data Mining in Bioinformatics ( BIOKDD 06 ) Workshop Chairs
Cellular functions are coordinately carried out by groups of genes and proteins forming functional modules. Detection of such functional modules from protein-protein interaction (PPI) networks is one of the most challenging and important problem in post genomic era. Moreover, the sparse connectivity of protein-protein interaction data sets makes identification of functional modules more challen...
متن کاملIdentifying functional modules in interaction networks through overlapping Markov clustering
MOTIVATION In recent years, Markov clustering (MCL) has emerged as an effective algorithm for clustering biological networks-for instance clustering protein-protein interaction (PPI) networks to identify functional modules. However, a limitation of MCL and its variants (e.g. regularized MCL) is that it only supports hard clustering often leading to an impedance mismatch given that there is ofte...
متن کاملSampling from social networks’s graph based on topological properties and bee colony algorithm
In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as de...
متن کاملA Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks
Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013